Home » База знаний » Знания о Пьезокерамике » Пьезоэлектрические материалы: свойства и классификация

Пьезоэлектрические материалы: свойства и классификация

Пьезоэлектрические материалы: свойства и классификация

Piezo specification from HE SHUAI

Спецификация пьезоэлектрических материалов

Пьезоэлектрические материалы (ПЭМ) представляют собой ключевой класс функциональных материалов и подразделяются на три основные категории: кристаллические, керамические и полимерные.

1. Классификация и сравнительный анализ пьезоэлектрических материалов

Наиболее распространёнными видами пьезокерамики являются цирконат-титанат свинца (PZT, ЦТС), титанат бария и титанат свинца. Нитрид галлия и оксид цинка также могут быть отнесены к керамическим материалам благодаря своей широкой запрещенной зоне.

1.1. Неорганические пьезоэлектрические материалы

Полупроводниковые ПЭМ обладают преимуществами, такими как совместимость с интегральными схемами и полупроводниковыми устройствами. Неорганическая пьезокерамика превосходит монокристаллы по технологичности: она проще в изготовлении, позволяет создавать изделия сложных форм и различных размеров, поскольку этот процесс не зависит от кристаллографических направлений.

1.2. Органические полимерные пьезоэлектрические материалы

Органические полимерные ПЭМ, такие как PVDF, имеют низкий модуль Юнга по сравнению с неорганическими аналогами. Пьезополимеры (например, PVDF) превосходят пьезокерамику (такую как PZT) по ключевому для датчиков параметру — пьезоэлектрическому коэффициенту напряжения g₃₃. Его значение для PVDF составляет 240 мВ·м/Н, что более чем в 20 раз выше, чем у PZT (11 мВ·м/Н). Это обуславливает их более высокую эффективность.

Кроме того, гибкость обработки полимеров позволяет легко производить датчики и актуаторы различных форм. Полимеры также демонстрируют высокую прочность, низкую диэлектрическую проницаемость, жесткость и плотность. Это сочетание свойств обеспечивает высокую чувствительность к напряжению и низкий акустический импеданс, что особенно важно для медицинского и подводного оборудования.

1.3. Композитные материалы и современные тенденции

Среди ПЭМ наибольшую популярность имеет керамика PZT благодаря высокой чувствительности и высокому значению g33. Однако она хрупкая и имеет низкую температуру Кюри, что ограничивает применение в условиях высоких температур и агрессивных сред.

Решением стало создание PZT-полимерных композитов, где керамические диски интегрируются в пластиковые промышленные изделия. Эта инновация позволила наладить крупномасштабное производство функциональных композитов с помощью простых процессов, таких как тепловая сварка или формование.

Также ведутся разработки по созданию бессвинцовой пьезокерамики, такой как:

  • Монокристаллы (например, лангасит)
  • Сегнетоэлектрическая керамика с перовскитной структурой
  • Слоистые ферроэлектрики (BLSF)

Отдельное внимание уделяется материалам на основе перовскита: BaTiO3, (Bi1/2Na1/2)TiO3, (Bi1/2K1/2)TiO3, KNbO3 и (K, Na)NbO3.

2. Ключевые пьезоэлектрические свойства

Для оценки и сравнения ПЭМ используется ряд фундаментальных параметров, определяющих их эффективность в различных применениях.

  • Пьезоэлектрические коэффициенты (d33, d31, d15) измеряют деформацию под действием приложенного напряжения (выражаются в м/В). Высокие коэффициенты dij указывают на большее смещение, необходимое для двигательных преобразователей.
    • Коэффициент d33 измеряет деформацию в направлении оси поляризации.
    • Коэффициент d31 – когда сила приложена перпендикулярно оси поляризации.
    • Коэффициент d15 характеризует отклик на сдвиговую деформацию.
  • Относительная диэлектрическая проницаемость (εr) – это отношение абсолютной диэлектрической проницаемости материала к проницаемости вакуума (ε0).
  • Коэффициент электромеханической связи (k) – показатель эффективности преобразования электрической энергии в механическую и наоборот. Первый индекс у k обозначает направление нанесения электродов, второй – направление приложения механической энергии.
  • Механическая добротность (Qm) – важный параметр для работы пьезокерамики в режиме большой мощности. Она характеризует потери на трение в материале и является величиной, обратной тангенсу угла механических потерь (tan φ).
Single crystals
Reference Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) Orientation Piezoelectric coefficients, d (pC/N) Relative permittivity, εr Electromechanical coupling factor, k Quality factor
Hutson 1963[2] AlN d15 = -4.07per ε33 = 11.4
d31 = -2
d33 = 5
Cook et al. 1963[3] BaTiO3 d15 = 392 ε11 = 2920 k15 = 0.57
d31 = -34.5 ε33 = 168 k31 = 0.315
d33 = 85.6 k33 = 0.56
Warner et al. 1967[4] LiNbO3 (Au-Au) <001> d15 = 68 ε11 = 84
d22 = 21 ε33 = 30
d31 = -1 k31 = 0.02
d33 = 6 kt = 0.17
Smith et al. 1971[5] LiNbO3 <001> d15 = 69.2 ε11 = 85.2
d22 = 20.8 ε33 = 28.2
d31 = -0.85
d33 = 6
Yamada et al. 1967[6] LiNbO3 (Au-Au) <001> d15 = 74 ε11 = 84.6
d22 = 21 ε33 = 28.6 k22 = 0.32
d31 = -0.87 k31 = 0.023
d33 = 16 k33 = 0.47
Yamada et al. 1969[7] LiTaO3 d15 = 26 ε11 = 53
d22 = 8.5 ε33 = 44
d31 = -3
d33 = 9.2
Cao et al. 2002[8] PMN-PT (33%) d15 = 146 ε11 = 1660 k15 = 0.32
d31 = -1330 ε33 = 8200 k31 = 0.59
d33 = 2820 k33 = 0.94
kt = 0.64
Badel et al. 2006[9] PMN-25PT <110> d31 = -643 ε33 = 2560 k31 = -0.73 362
Kobiakov 1980[10] ZnO d15 = -8.3 ε11 = 8.67 k15 = 0.199
d31 = -5.12 ε33 = 11.26 k31 = 0.181
d33 = 12.3 k33 = 0.466
Zgonik et al. 1994[11] ZnO (pure with lithium dopant) d15 = -13.3 kr = 8.2
d31 = -4.67
d33 = 12.0
Zgonik et al. 1994[12] BaTiO3 single crystals [001] (single domain) d33 = 90
Zgonik et al. 1994[12] BaTiO3 single crystals [111] (single domain) d33 = 224
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral (domain size of 100 ľm) d33 = 235 ε33 = 1984 k33 = 54.4
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral (domain size of 60 ľm) d33 = 241 ε33 = 1959 k33 = 55.9
Zgonik et al. 1994[12] BaTiO3 single crystals [111] (domain size of 22 ľm) d33 = 256 ε33 = 2008 k33 = 64.7
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral (domain size of 15 ľm) d33 = 274 ε33 = 2853 k33 = 66.1
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral (domain size of 14 ľm) d33 = 289 ε33 = 1962 k33 = 66.7
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral d33 = 331 ε33 = 2679 k33 = 65.2
[13] LN crystal d31 = -4.5

d33 = -0.27

Li et al. 2010[14] PMNT31 d33 = 2000 ε33 = 5100 k31 = 80
d31 = -750
Zhang et al. 2002[15] PMNT31-A 1400 ε33 = 3600
Zhang et al. 2002[15] PMNT31-B 1500 ε33 = 4800
Zhang et al. 2002[15] PZNT4.5 d33 = 2100 ε33 = 4400 k31 = 83
d31 = -900
Zhang et al. 2004[16] PZNT8 d33 = 2500 ε33 = 6000 k31 = 89
d31 = -1300
Zhang et al. 2004[16] PZNT12 d33 = 576 ε33 = 870 k31 = 52
d31 = -217
Yamashita et al. 1997[17] PSNT33 ε33 = 960 /
Yasuda et al. 2001[18] PINT28 700 ε33 = 1500 /
Guo et al. 2003[19] PINT34 2000 ε33 = 5000 /
Hosono et al. 2003[20] PIMNT 1950 ε33 = 3630 /
Zhang et al. 2002[15] PYNT40 d33 = 1200 ε33 = 2700 k31 = 76
d31 = -500
Zhang et al. 2012[21] PYNT45 d33 = 2000 ε33 = 2000 k31 = 78
Zhang et al. 2003[22] BSPT57 d33 = 1200 ε33 = 3000 k31 = 77
d31 = -560
Zhang et al. 2003[23] BSPT58 d33 = 1400 ε33 = 3200 k31 = 80
d31 = -670
Zhang et al. 2004[16] BSPT66 d33 = 440 ε33 = 820 k31 = 52
d31 = -162
Ye et al. 2008[24] BSPT57 d33 = 1150

d31 = -520

ε33 = 3000 k31 = 0.52

k33 = 0.91

Ye et al. 2008[24] BSPT66 d33 = 440 ε33 = 820 k31 = 0.52

k33 = 0.88

d31 = -162
Ye et al. 2008[24] PZNT4.5 d33 = 2000

d31 = -970

ε33 = 5200 k31 = 0.50

k33 = 0.91

Ye et al. 2008[24] PZNT8 d31 = -1455 ε33 = 7700 k31 = 0.60

k33 = 0.94

Ye et al. 2008[24] PZNT12 d33 = 576

d31 = -217

ε33 = 870 k31 = 0.52

k33 = 0.86

Ye et al. 2008[24] PMNT33 d33 = 2820

d31 = -1330

ε33 = 8200 k31 = 0.59

k33 = 0.94

Matsubara et al. 2004[25] KCN-modified KNN d33 = 100

d31 = -180

ε33 = 220-330 kp = 33-39 1200
Ryu et al. 2007[26] KZT modifiedKNN d33 = 126 ε33 = 590 kp = 42 58
Matsubara et al. 2005[27] KCT modified KNN d33 = 190 ε33 = kp = 42 1300
Wang et al. 2007[28] Bi2O3 doped KNN d33 = 127 ε33 = 1309 kp = 28.3
Jiang et al. 2009[29] doped KNN-0.005BF d33 = 257 ε33 = 361 kp= 52 45
Ceramics
Reference Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) Orientation Piezoelectric coefficients, d (pC/N) Relative permittivity, εr Electromechanical coupling factor, k Quality factor
Berlincourt et al. 1958[30] BaTiO3 d15 = 270 ε11 = 1440 k15 = 0.57
d31 = -79 ε33 = 1680 k31 = 0.49
d33 = 191 k33 = 0.47
Tang et al. 2011[31] BFO d33 = 37 kt = 0.6
Zhang et al. 1999[32] PMN-PT d31 = -74 ε33 = 1170 k31 = -0.312 283
[33] PZT-5A d31 = -171 ε33 = 1700 k31 = 0.34
d33 = 374 k33 = 0.7
[34] PZT-5H d15 = 741 ε11 = 3130 k15 = 0.68 65
d31 = -274 ε33 = 3400 k31 = 0.39
d33 = 593 k33 = 0.75
[35] PZT-5K d33 = 870 ε33 = 6200 k33 = 0.75
Tanaka et al. 2009[36] PZN7%PT d33 = 2400 εr = 6500 k33 = 0.94

kt = 0.55

Pang et al. 2010[37] ANSZ d33 = 295 1.61 45.5 84
Park et al. 2006[38] KNN-BZ d33 = 400 2 57.4 48
Cho et al. 2007[39] KNN-BT d33 = 225 1.06 36.0
Park et al. 2007[40] KNN-ST d33 = 220 1.45 40.0 70
Zhao et al. 2007[41] KNN-CT d33 = 241 1.32 41.0
Zhang et al. 2006[42] LNKN d33 = 314 ~700 41.2
Saito et al. 2004[43] KNN-LS d33 = 270 1.38 50.0
Saito et al. 2004[43] LF4 d33 = 300 1.57
Tanaka et al. 2009[36] Oriented LF4 d33 = 416 1.57 61.0
Pang et al. 2010[37] ANSZ d33 = 295 1.61 45.5 84
Park et al. 2006[38] KNN-BZ d33 = 400 2 57.4 48
Cho et al. 2007[44] KNN-BT d33 = 225 1.06 36.0
Park et al. 2007[40] KNN-ST d33 = 220 1.45 40.0 70
Maurya et al. 2013[45] KNN-CT d33 = 241 1.32 41.0
Maurya et al. 2013[45] NBT-BT (001) Textured samples d33 = 322
Gao et al. 2008[46] NBT-BT-KBT (001) Textured samples d33 = 192
Zou et al. 2016[47] NBT-KBT (001) Textured samples d33 = 134 kp= 35
Saito et al. 2004[43] NBT-KBT (001) Textured samples d33 = 217 kp = 61
Chang et al. 2009[48] KNLNTS (001) Textured samples d33 = 416 kp = 64
Chang et al. 2011[49] KNNS (001) Textured samples d33 = 208 kp = 63
Hussain et al. 2013[50] KNLN (001) Textured samples d33 = 192 kp = 60
Takao et al. 2006[51] KNNT (001) Textured samples d33 = 390 kp = 54
Li et al. 2012[52] KNN 1 CuO (001) Textured samples d33 = 123 kp = 54
Cho et al. 2012[53] KNN-CuO (001) Textured samples d33 = 133 kp = 46
Hao et al. 2012[54] NKLNT (001) Textured samples d33 = 310 kp = 43
Gupta et al. 2014[55] KNLN (001) Textured samples d33 = 254
Hao et al. 2012[54] KNN (001) Textured samples d33 = 180 kp = 44
Bai et al. 2016[56] BCZT (001) Textured samples d33 = 470 kp = 47
Ye et al. 2013[57] BCZT (001) Textured samples d33 = 462 kp = 49
Schultheiß et al. 2017 [58] BCZT-T-H (001) Textured samples d33 = 580
OMORI et al. 1990[59] BCT (001) Textured samples d33 = 170
Chan et al. 2008[60] Pz34 (doped PbTiO3) d15 = 43.3 ε33 = 237 k31 = 4.6 700
d31 = -5.1 ε33 = 208 k33 = 39.6
d33 = 46 k15 = 22.8
kp = 7.4
Lee et al. 2009[61] BNKLBT d33 = 163 εr = 766 k31 = 0.188 142
ε33 = 444.3 kt = 0.524
kp = 0.328
Sasaki et al. 1999[62] KNLNTS εr = 1156 k31 = 0.26 80
ε33 = 746 kt = 0.32
kp = 0.43
Takenaka et al. 1991[63] (Bi0.5Na0.5)TiO3 (BNT)-based BNKT d31 = 46 εr = 650 kp = 0.27
d33 = 150 k31 = 0.165
Tanaka et al. 1960[64] (Bi0.5Na0.5)TiO3 (BNT)-based BNBT d31 = 40 εr = 580 k31 = 0.19
d33 = 12.5 k33 = 0.55
Hutson 1960[65] CdS d15 = -14.35
d31 = -3.67
d33 = 10.65
Schofield et al. 1957[66] CdS d31 = -1.53
d33 = 2.56
Egerton et al. 1959[67] BaCaOTi d31 = -50 k15 = 0.19 400
d33 = 150 k31 = 0.49
k33 = 0.325
Ikeda et al. 1961[68] Nb2O6Pb d31 = -11 kr = 0.07 11
d33 = 80 k31 = 0.045
k33 = 0.042
Ikeda et al. 1962[69] C6H17N3O10S d23 = 84 k21 = 0.18
d21 = 22.7 k22 = 0.18
d25 = 22 k23 = 0.44
Brown et al. 1962[70] BaTiO3 (95%) BaZrO3 (5%) k15 = 0.15 200
d31 = -60 k31 = 0.40
d33 = 150 k33 = 0.28
Huston 1960[65] BaNb2O6 (60%) Nb2O6Pb (40%) d31 = -25 kr = 0.16
Baxter et al. 1960[71] BaNb2O6 (50%) Nb2O6Pb (50%) d31= -36 kr = 0.16
Pullin 1962[72] BaTiO3 (97%) CaTiO3 (3%) d31 = -53 ε33 = 1390 k15 = 0.39
d33 = 135 k31 = 0.17
k33 = 0.43
Berlincourt et al. 1960[73] BaTiO3 (95%) CaTiO3 (5%) d15 = -257 ε33 = 1355 k15 = 0.495 500
d31 = -58 k31 = 0.19
d33 = 150 k33 = 0.49
kr = 0.3
Berlincourt et al. 1960[73] BaTiO3 (96%) PbTiO3 (4%) d31 = -38 ε33 = 990 k15 = 0.34
d33 = 105 k31 = 0.14
k33 = 0.39
Jaffe et al. 1955[74] PbHfO3 (50%) PbTiO3 (50%) d31 = -54 kr = 0.38
Kell 1962[75] Nb2O6Pb (80%) BaNb2O6 (20%) d31 = 25 kr = 0.20 15
Brown et al. 1962[70] Nb2O6Pb (70%) BaNb2O6 (30%) d31 = -40 ε33 = 900 k31 = 0.13 350
d33 = 100 k33 = 0.3
kr = 0.24
Berlincourt et al. 1960[76] PbTiO3 (52%) PbZrO3 (48%) d15 = 166 k15 = 0.40 1170
d31 = -43 k31 = 0.17
d33 = 110 k33 = 0.43
kr = 0.28
Berlincourt et al. 1960[77] PbTiO3 (50%) lead Zirconate (50%) d15 = 166 k15 = 0.504 950
d31 = -43 k31 = 0.23
d33 = 110 k33 = 0.546
kr = 0.397
Egerton et al. 1959[67] KNbO3 (50%) NaNbO3 (50%) d31 = -32 140
d33 = 80 k31 = 0.21
k33 = 0.51
Brown et al. 1962[70] NaNbO3 (80%) Cd2Nb2O7 (20%) d31 = -80 ε33 = 2000 k31 = 0.17
d33 = 200 k33 = 0.42
kr = 0.30
Schofield et al. 1957[66] BaTiO3 (95%) CaTiO3 (5%) CoCO3 (0.25%) d31 = -60 ε33 = 1605 kr = 0.33
Pullin 1962[72] BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) d31 = -31 k31 = 0.15 1200
d33 = 79 k33 = 0.41
kr = 0.24
Defaÿ 2011[78] AlN (Pt-Mo) d31 = -2.5
Shibata et al. 2011[79] KNN(Pt-Pt) <001> d31 = -96.3 εr = 1100
d33 = 138.2
Sessler 1981[80] PVDF d31 = 17.9 k31 = 10.3
d32 = 0.9 k33 = 12.6
d33 = -27.1
Ren et al. 2017[81] PVDF d31 = 23 εr = 106
d32 = 2
d33 = -21
Tsubouchi et al. 1981[82] Epi AlN/Al2O3 <001> d33 = 5.53 ε33 = 9.5 kt = 6.5 2490

3. Ассортимент предлагаемых материалов

В нашем распоряжении – сотни видов пьезоэлектрических материалов. Вне зависимости от ваших требований – нужен ли вам мягкий (PZT-5A, PZT-5H) или твердый материал (PZT-4, PZT-8 серии) – у нас есть все необходимое.